MODERN APPROACHES TO STATISTICAL INFORMATION PROCESSING IN SOCIAL PEDAGOGY
DOI:
https://doi.org/10.32782/3041-2021/2024-1-2Keywords:
statistical laws, Gauss’ law and the theory of mean, Pearson-Jeffreys law, statistical software products.Abstract
Introduction. The main task of social pedagogy is to study the patterns of socio-cultural adaptation of the individual, collectives, societies with adjacent humanity and harmonization of their relations. Social pedagogy has three basic features, namely: – extensive use of statistical data, since they are the basis for identifying certain patterns; – the need to process samples of large size in order to ensure proper reliability of statistical findings; – the analysis of huge data arrays encourages each researcher in the field of social pedagogy to make wide use of statistical software products in order to automate calculations. Since social pedagogy, in Ukraine, is still quite young discipline, then this peculiarities are not given due attention. Moreover, these principles are not fully understood by specialists in the field of social pedagogy. The purpose of this study is not only the disclosure of the value of each of these features of social pedagogy, but the first modern approaches to the statistical information processing of classical and neoclassical volumes. The research methodology is based on modern achievements of mathematical statistics and probability theory in the field of statistical information processing and mathematical model. Results. It is shown that the use of statistical data requires first of all a mathematically unambiguous and accurate understanding of the essence of the mean. It is indicated that it can have a scientific application only when homogeneous data are mediated. A mathematical definition of the homogeneity of statistical data is given. The necessity of using non-classical error theory of measurement (NETM) for samples with a volume of n > 500 is justified. An overview of the main groups of software products that allow you to automate the processing of statistical data in social pedagogy is given. Scientific novelty. For the first time, a mathematical exact definition of the notion of homogeneity of statistical data is given. It is shown that these are the results of statistical observations with a normal distribution, can always be tested using favorable conditions of mathematical statistics. A completely new proposal is on the use of NETM for processing large volumes. Also for the first time, this classification of software product groups for automating the processing of statistical information by social pedagogy specialists. Conclusion. Three principal features of social pedagogy are noted, as modern science, which deals with the processing of statistical data not only classical volumes (up to 500 observations), but also data that have a much larger volume due to computerization and automation of measurements and for which the fundamental axiom of normality is not capable according to the statement of the Cambridge Professor H. Jeffreys. In this case, it is necessary to apply the methods of non-classical error theory of observations.
References
Bowley A. L. Elements of Statistics. LULU Press. 2015. 394 p.
Gauss C. F. Theory motus corporum coelestium in sectionibus conicis Solem ambientium. Hamburgi. 1809.
Уманець Т. В. Загальна теорія статистики : навч. посіб. Київ : Знання, 2006. 239 с.
Джунь Й. В. Основи математичної статистки у фізичному вихованні та фізичній реабілітації : методичні
рекомендації для магістрів денної і заочної форм навчання. Рівне :Тетіс, 2010. 88 с.
Jeffreys H. Theory of Probability. Sec. Edition. Oxford University. 1998. 470 p.
Pearson K. On the Mathematical Theory of Errors of Judgment with special References to the Personal Equation.
Philosophical Transactions of the Royal Society of London. Ser. A., vol. 198, 235–296. 1902.
Bessel F. W. Untersuhungen uber die Wahrscheinlickeit der Beobachtungs-fehle. Astronomische Nachrichten,
b. 15, 369. 1838.
Dzhun I. V. Pearson Distribution of type VII of the Errors of Satellite Lasen Ranging Data. Kinematics and Physics
of Celestial Bodies. Vol. 7, № 3, pp. 82–91. New-York: Allerton Press Inc. 1991.
Джунь Й. В. Аналіз паралельних широтних спостережень, виконаних за загальною програмою : автореф.
дис. … канд. фіз.-мат. наук : 01.03.01 «Астрометрія і небесна механіка». Інститут математики АН УССР,
19 с.
Джунь Й. В., Арнаутов Г. П., Стусь Ю. Ф., Щеглов С. Н. Особливість закону розподілу результатів
балістичних вимірів прискорення сили тяжіння. Повторні гравіметричні спостереження. 1983. С. 59–65.
Dzhun I. V. About make use of Pearson Distribution of type VII for the Approximation of Observation Errors in
Astrometry. Measurements Techniques. Vol. 35, № 3, pp. 298–304. Springer Science + Business Media Inc., 1992.
Dzhun I. V. The Problems of Probability Methods in Economics. Economical Firiem, 1998, Bardejovske Kupele.
-06.05.1998, pp. 444–448, 1998.
Dzhun I. V. Method for diagnostics of Mathematical Models in Theoretical Astronomy and Astrometry. Kinematics
and Physics of Celestial Bodies. Vol. 27, № 5, pp. 61–67. Allerton Press. Inc., New York, 2011.
Taleb N. N. The Black Swan: The Impact of the Highly Improbable-New York: Random House, 2007. 400 p.
Джунь Й. В. Некласична теорія похибок вимірів. Рівне : ЕСТЕРО, 2015. 168 с.
Hampel F. R., Ronchetti M., Rousseeuw P. J., Stahel W. A. Robust statistics. The Approach Based on Influence.
John Wiley & Sons. New York, 1986.
Dzhun I. V. Distribution of Errors in Multiple Large Volume Observations. Measurements Techniques. Vol. 55,
№ 4, pp. 393–396. Springer, 2012.
Джунь Й. В. Математична обробка астрономічної та космічної інформації при негаусових помилках
спостережень : автореферат дис. … д-ра фіз.-мат. наук : 01.03.01 «Астрометрія і небесна механіка». Київ :
ГАО НАН України, 1992. 46 с.
Tukey J. W. Data Analysis and the Frontieres of Geophysics. Science, 1965, 4 June, vol. 148.
Dzhun I. V. Non-Classical Theory Measurements Errors. USA: Amazon, 2019, 200 p.
Жалдак М. І. Комп’ютер на уроках математики : посібник для вчителів. Київ : Техніка. 1997. 303 с.